Optimal Feed Forward MLPArchitecture for Off-Line Cursive Numeral Recognition
نویسندگان
چکیده
The purpose of this work is to analyze the performance of back-propagation feed-forward algorithm using various different activation functions for the neurons of hidden and output layer and varying the number of neurons in the hidden layer. For sample creation, 250 numerals were gathered form 35 people of different ages including male and female. After binarization, these numerals were clubbed together to form training patterns for the neural network. Network was trained to learn its behavior by adjusting the connection strengths at every iteration. The conjugate gradient descent of each presented training pattern was calculated to identify the minima on the error surface for each training pattern. Experiments were performed by selecting different combinations of two activation functions out of the three activation functions logsig, tansig and purelin for the neurons of the hidden and output layers and the results revealed that as the number of neurons in the hidden layer is increased, the network gets trained in small number of epochs and the percentage recognition accuracy of the neural network was observed to increase up to certain level and then it starts decreasing when number of hidden neurons exceeds a certain level. KeywordsNumeral Recognition, MLP, Hidden Layers, Backpropagation, Conjugate Gradient Descent, Activation Functions.
منابع مشابه
Recognition-Based Segmentation of On-Line Cursive Handwriting
This paper introduces a new recognition-based segmentation approach to recognizing on-line cursive handwriting from a database of 10,000 English words. The original input stream of z, y pen coordinates is encoded as a sequence of uniform stroke descriptions that are processed by six feed-forward neural-networks, each designed to recognize letters of different sizes. Words are then recognized by...
متن کاملImplementation of Feed-forward Neural Network Models for Pattern Classification Using Transformation Based Feature Extraction Methods
Automatic recognition of handwritten Hindi characters is a difficult and one of the most interesting research areas of pattern recognition field. A lot of work has been done in this area till date; still it is a subject of active research. Hindi characters are cursive in nature and thus characters may be written in various cursive ways. Characters also show a lot of similar features such as hea...
متن کاملCursive Word Recognition Using a Novel Feature Extraction Method and a Neural Network
In this paper, we present a holistic system for the recognition of cursive handwriting that utilizes a novel feature extraction method and a neural network. The Hough transform is a global line detection technique with the ability of extracting directional information presenting good tolerance to disconnections and noise and a moderate tolerance to distortion. However, its global nature is also...
متن کاملChapter 0 Stroke - Based Cursive Character Recognition
In this chapter, we keep focusing on on-line writer independent cursive character recognition engine. In what follows, we explain the importance of on-line handwriting recognition over off-line, the necessity of writer independent system and the importance as well as scope of cursive scripts like Devanagari. Devanagari is considered as one of the known cursive scripts [20, 29]. However, we aim ...
متن کاملOff-line cursive handwriting recognition compared with on-line recognition
Off-line handwriting recognition has wider applications than on-line recognition, yet it seems to be a harder problem. While on-line recognition is based on pen trajectory data, off-line recognition has to rely on pixel data only. We present a comparison between an off-line and an on-line recognition system using the same databases and system design. Both systems use a sliding window technique ...
متن کامل